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Disclaimer
● I’m on ATLAS, I’ve been on ATLAS since I wrote my first line of C++

○ Everything here has a huge bias as a result

● I’ll talk mostly about neural networks: boosting follows a similar workflow
○ It’s still very popular, just not as much development recently

● I’m not an expert in anything I’m about to present
○ I’m a physics postdoc: I mostly think about what physics I’ll accomplish in the next 5 years
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The Machine Learning Workflow
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The Non Machine Learning Workflow
Production Optimization
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Step 1: restructure primary data
● Traditional hep code: process 

one object at a time
● ML is driven by parallelism

○ E.g. GPUs

● Our data isn’t formatted 
ideally for SIMD instructions

○ Want arrays not trees

● Numpy is a more natural fit
○ For now we’re all python
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Making Datasets
● Funtime Activity: Find Your Way To Numpy
● Note: oversimplified setup

○ Many pipelines are more complicated

Primary
Data

HDF5 / Zarr / etc

ROOT
ntuple

Numpy

Main changes in the last few years:
● More uproot
● More non-ROOT formats
● People are better at numpy 6



Can we make this simpler?
● Maybe... but it’s not the obvious place to start
● In practice: Event Data Model (EDM) → training is several steps 

Mini-EDMIdeal:

Mini-EDM

(or something)

reality:

quasi-EDM

(or something)
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But I want to make it better anyway!
● Great! How should we do this?
● LHC: “We have an Exabyte of ROOT data, we should use ROOT!”

○ Problem: our primary data is nothing like our training datasets
○ Also ROOT format := whatever is in a ROOT file, not a real standard

● ROOT: “we should invent a new data format!” (RNtuple)
○ Widespread use will require factorization and standardization

● Armchair Data Nerds (i.e. me): “Hasn’t someone already solved this problem?”
○ Parquet is another promising candidate
○ Many open source projects are receiving little to no funding!

● My opinion: we need more core developers for experiments
● Anyway, once we have some training data...
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https://github.com/apache/parquet-format


A few choices: Training “Flowchart”

pip or 
virtual 
environment

LCG
Views

Grid
GPUs
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How to improve? Focus on distribution
pip / 
venv

conda LCG 
Views

Containers 
(Docker, 
podman, 
singularity)

User configurable Y Y X Y

Work on laptop Y Y :’( Y

Work on desktop Y Y Y Y

Works on cluster :( :( Y Y (need work)

Works on grid :( :( Y Y (need work)

Composable Y Y :( X 

● LCG views: lazy load an OS 
from a FUSE mount

○ Requires network!
● Containers: eager-load an OS 

from an image
● Containers could be synched / 

distributed more intelligently
○ Examples exist
○ Consider podman?
○ Or native docker?

● I assume root access to a 
desktop, normal user privileges 
for a cluster

● Containers can be user-defined, but we could centralize support (e.g. base layers) 10

https://gitlab.cern.ch/unpacked/sync


How do we apply models?
Training Database Inference

Symmetric

lwtnn
Factorized
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But isn’t symmetric easier?
Advantages of symmetric:

● Only one library
● Cutting edge support

○ No need for standards

● Less validation required
● No need to understand format(s)

Problems with symmetric:

● Framework bloat
○ CMSSW has ~4 NN libraries
○ Dependency hell [1]

● C++ binding support

● Eventually, symmetric implementations tend to become factorized
○ E.g. Tensorflow in CMSSW

● But factorization will require model translation
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https://discuss.pytorch.org/t/torchscript-compatibility-between-pytorch-versions/87655/2


Will                  save the day?

● Pro: there’s a well defined specification, with many community contributors
○ Brought to you (in part) by Microsoft. What a time to be alive!

● Con: common standards always lag, big players have their own inference frameworks 13

https://github.com/onnx/onnx/blob/master/docs/IR.md


Or will industry push lock-in?

VS = VS
?

● Current trend is toward a duopoly: Will ML go the way of instant messaging?*
○ Can we help?

*there still might be hope 
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https://en.wikipedia.org/wiki/Matrix_(protocol)


In short:
It’s (mostly) chaos!
(i.e. like the rest of academic code)
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Maybe chaos (autonomy) isn’t so bad
● We work in small teams

○ One reality of our funding structure

● Every application is different
● Commonality within experiments:

○ Branding
○ Raw ingredients
○ Internal quality review

● Think of it as a franchise

Wikipedia: “...a franchisor licenses its know-how, procedures, 
intellectual property, use of its business model, brand... In return 
the franchisee pays certain fees and agrees to comply with 
certain obligations, typically set out in a Franchise Agreement.”
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https://en.wikipedia.org/wiki/Franchising
https://en.wikipedia.org/wiki/Business_model


Summary: What can we do to help?
● Keep a balanced menu

○ Best practices can evolve, especially in ML
○ Avoid monoculture

● Know what you eat
○ Experiments can’t avoid having ML engineers

■ Especially with more integrated ML
○ Common standards help here

● Pay your workers (anything)
○ Open source software doesn’t pay (much)
○ But we rely on it heavily
○ Even citing your libraries helps (and it’s free)
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Thank You!
Enjoy your 

physics! 
(don’t ask me what’s in it, it’s complicated)
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No, Really... it’s 
over now. (backup after this)
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So what’s new in the ML workflow?
● At a high level: very little
● Making derived datasets → 50% of every PhD

○ Training datasets aren’t very big: size < 1 TB

● Running stand-alone optimizations → 25% of many PhDs
● Calibration data:

○ We’ve done this forever
○ In many cases we’re overtooled here

● At a low level: lots of things are new to physicists
○ But don’t confuse “new to physics” with “new technology”

● Bottom line: this should be easy as long as we keep it simple
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The boring spectrum

Standardized Stable Developing Bleeding edge

ONNX ROOT files TMVA RNtuple

Parquet EDMs Tensorflow, Keras Data Lakes

HDF5 CVMFS PyTorch, libtorch

JSON uproot
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ATLAS inference notes
● lwtnn: stable, probably won’t change much in the near future

○ This is a good thing: it will go into run 3 trigger (tau, b-jet) and (hopefully) tracking

● Onnx runtime: merged to AtlasExternals 
○ It’s 11 MB or so: any reason not to merge this?
○ Supports many more models than lwtnn

● MVAUtils: BDT support in reconstruction
○ Should probably be a stand alone library

■ TMVA dependency recently removed, could we remove ROOT?
○ Support for XGBoost, LightGBM, TMVA

● Overall: we don’t need full training libraries in reconstruction
○ Software team is small, support isn’t worth our time
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https://github.com/lwtnn/lwtnn
https://gitlab.cern.ch/atlas/atlasexternals/merge_requests/583
https://gitlab.cern.ch/atlas/athena/tree/21.2/Reconstruction/MVAUtils


Training Side
● Strategy is the same as ever

○ No “hep” code
○ Use docker containers

● Build system:

pip install -r requirements.txt

● Lots of work scaling up
○ Cern has a GPU batch now!
○ Adding more grid sites

● Everything is python
○ The grad students love python
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Also: we still need containers
● Small scale testing: use your laptop or local cluster
● Medium scale: lots of options, see Doug’s talk (also CERN batch)
● Large scale: submit to the grid

○ See instructions and tutorial

24

https://indico.cern.ch/event/881125/contributions/3721578/
https://indico.cern.ch/event/844092/contributions/3636415/
https://gitlab.cern.ch/aml/tutorials/dl1-hyperparameter-optimisation


Are we limited? Not so much (anymore)
● Our NNs are pretty simple

○ We built a pretty good detector
■ Complexity increase not certain

○ FTAG RNN (21 MB file): 666,462 pars
○ Many industry nets are O(10M)

● Our jobs aren’t too complicated
○ HP scans work “natively” on the grid

● We could use an “extension” 
mechanism for long jobs

● Other ideas (active learning) could 
come later

Hyperparameter 
scan

Train Train Train Train

Train 
More

Train 
More

Active learning
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https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTagging/201903/rnnip/antikt4empflow/network.json


Crazier Ideas
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Python: fun for the whole analysis!
● Write a for loop over PHYSLITE

○ Apply systematic, dump dataset

● Move everything into python
○ ML: anything you want
○ Lots of data formats
○ Use pyhf / scipy for limits
○ end-to-end learning is “easy”

■ d(limit)/d(anything)

● Vectorized out of the box
● This assumes

○ I know what I’m doing physics-wise
○ I don’t want to write any tools

DAOD
Files

ROOT

Data 
Pipeline

Stats ML
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https://keras.io/
https://pytorch.org/
https://github.com/google/jax
https://github.com/scikit-hep/uproot
https://www.h5py.org/
https://github.com/scikit-hep/pyhf
https://www.scipy.org/


Can we use this for production?
● No (not yet)

○ no simple way to write a (D)AOD 
○ Have to deal with awkward arrays

● Maybe it’s worth trying
○ We could solve the inference problem

■ Or at least push it upstream
○ We could vectorize on HPCs for “free”

● Need python bindings for our EDM
○ PyROOT doesn’t count
○ Bindings need to be batch-wise

DAOD

?
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What would be nice
● Ambitious goal: read AOD easily

pip install atlas_edm

● Or as an intermediate step

yum install atlas_edm

● We already have AnalysisBase as a docker image
○ But it’s O(1 GB)
○ Also installs a lot (compiler, ROOT)
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Roadmap: Less (C++) is more
● Figure out what the EDM needs to depend on

○ Maybe rip a few things out of ROOT, i.e. TLorentzVector
○ CLHEP / Eigen for particles / tracks
○ FastJet probably needed for jets

● Remove ROOT
○ Replace it with uproot (the C++ bindings)

● Then work on python bindings
● Having a “light” release would be nice for a few reasons

○ Weird HPC architecture
○ ML (obviously)

● Open data / education deserves its own mention
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What about systematics?
● The current paradigm: take your data, leave the HEP ecosystem

○ Not a great way to use common code (or produce it)

● A lot of CP code is of the form
1. Get a jet
2. Look up variation by bin
3. Multiply jet by variation

● Basically pt *= scale_factor[np.digitize(pt, pt_bins)]
○ Again, vectorized out of the box, can hook in GPU

● Missing parts
○ Community: hardly anyone actually does this
○ Tools are slightly more complicated than this

● We could do most post-PHYSLITE analysis in python
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How big are the ATLAS libraries?
Just the libxAOD .so files (excluding Dict files):

du -s /usr/AnalysisBase/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/libxAOD*.so | grep -v Dict.so | awk '{a+=$1} ; END {print a}'

18,288

Every .so file

du -s /usr/AnalysisBase/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/*.so |awk '{a+=$1} ; END {print a}'

113,164
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How big is ROOT?
du -s 
/usr/AnalysisBaseExternals/21.2.108/InstallArea/x86_64-centos7-gcc8-opt/lib/lib* | 
egrep 'lib[A-Z]+[a-z]*' | awk '{a+=$1}; END {print a}'

247,304
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